High throughput toxicity screening and intracellular detection of nanomaterials
نویسندگان
چکیده
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods-namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
منابع مشابه
Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment
Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays...
متن کاملMolecular interactions of nanomaterials and organisms: defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches.
The toxicity of nanomaterials depends on the basic interaction of the chemistry of the material with the molecular pathways in an organism. To design safe and sustainable nanomaterials, more detailed information on the molecular interaction and biochemical machinery that is altered in an organism upon contact with a nanomaterial is needed. There are a multitude of papers now on the toxicity of ...
متن کاملNootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method
The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...
متن کاملHigh Throughput Method for Assessment of Cellular Reduced Glutathione in Mammalian Cells.
Reduced glutathione (GSH) is an intracellular molecule essential for many aspects of cell physiology and defense. Determination of GSH has been used to identify potential anti-cancer drugs and for the assessment of drug toxicity via generation of oxidative stress. The described protocol was designed to modify existing protocols for the fluorescent detection of intracellular GSH in a high throug...
متن کاملA Review of Toxicity of Some Conventional Nanomaterials
Increased production and use of nanomaterials has led to an ever growing exposure of living organisms tothese substances. Limited knowledge about possible toxicity of nanomaterials and their potential to harmliving creatures is becoming a serious concern. To address this problem, there is a need for development ofdiagnostic methods enabling effective determination of potential toxicity of nanom...
متن کامل